
Published online 13 May 2016 Nucleic Acids Research, 2016, Vol. 44, No. 13 e117
doi: 10.1093/nar/gkw430

TSCAN: Pseudo-time reconstruction and evaluation in
single-cell RNA-seq analysis
Zhicheng Ji and Hongkai Ji*

Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street,
Baltimore, MD 21205, USA

Received September 01, 2015; Revised April 10, 2016; Accepted May 05, 2016

ABSTRACT

When analyzing single-cell RNA-seq data, construct-
ing a pseudo-temporal path to order cells based on
the gradual transition of their transcriptomes is a
useful way to study gene expression dynamics in
a heterogeneous cell population. Currently, a limited
number of computational tools are available for this
task, and quantitative methods for comparing dif-
ferent tools are lacking. Tools for Single Cell Anal-
ysis (TSCAN) is a software tool developed to bet-
ter support in silico pseudo-Time reconstruction in
Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-
based minimum spanning tree (MST) approach to or-
der cells. Cells are first grouped into clusters and
an MST is then constructed to connect cluster cen-
ters. Pseudo-time is obtained by projecting each cell
onto the tree, and the ordered sequence of cells can
be used to study dynamic changes of gene expres-
sion along the pseudo-time. Clustering cells before
MST construction reduces the complexity of the tree
space. This often leads to improved cell ordering. It
also allows users to conveniently adjust the order-
ing based on prior knowledge. TSCAN has a graph-
ical user interface (GUI) to support data visualiza-
tion and user interaction. Furthermore, quantitative
measures are developed to objectively evaluate and
compare different pseudo-time reconstruction meth-
ods. TSCAN is available at https://github.com/zji90/
TSCAN and as a Bioconductor package.

INTRODUCTION

Single-cell RNA-seq is a transformative technology that al-
lows researchers to measure transcriptomes of individual
cells (1,2). Unlike single-cell RNA-seq, conventional RNA-
seq (also referred to as ‘bulk RNA-seq’) (3,4) or microarray
(5,6) experiments are used to measure average gene expres-
sion of a cell population. In many applications, the cell pop-
ulation is heterogeneous and contains multiple cell types.

As a result, the average transcriptome of the population
may fail to capture important transcriptional signals in in-
dividual cells. Sometimes, using the population average to
study cell type specific behavior can also be misleading due
to Simpson’s paradox (7,8). With the ability to measure the
transcriptome of each individual cell, single-cell RNA-seq
is capable of generating a higher resolution view of the gene
expression landscape in a heterogeneous cell population (9–
11). This can lead to a more accurate molecular characteri-
zation of a complex biological phenomenon (12).

As demonstrated by (8), one useful way to gain biologi-
cal insights from single-cell RNA-seq data is to computa-
tionally order cells according to the gradual transition of
their transcriptomes. For example, in a cell differentiation
process, cells can evolve at different speeds. A sample of
cells collected at a particular time point during differentia-
tion can actually contain cells representing different differ-
entiation stages. Using single-cell RNA-seq data, one may
construct an ordered sequence of cells to describe the grad-
ual transition of the single-cell transcriptome. If this in sil-
ico order is consistent with cells’ true differentiation stages,
then by analyzing how gene expression changes along this
ordered sequence of cells, one will be able to obtain in-
sights on the transcriptome dynamics during the differenti-
ation process. The process of ordering cells in silico is called
pseudo-time reconstruction because it mimics a procedure
that places cells on a time axis. Despite the use of the term
‘time’, ‘pseudo-time reconstruction’ can more generally re-
fer to any cell ordering procedure regardless of whether the
ordering has a time interpretation (e.g. the ordering of cells
may reflect cells’ spatial order rather than their temporal or-
der).

Several computational methods have been proposed to
analyze single-cell genomic data such as single-cell mass
cytometry data (13–15) and single-cell gene expression
data (8,16–19). However, for pseudo-time reconstruction in
single-cell RNA-seq data, there are only a limited number
of methods that have been systematically tested and have
easily accessible software tools. In (8), an unsupervised ap-
proach Monocle was proposed to solve this problem. Mon-
ocle uses a minimum spanning tree (MST) to describe the
transition structure among cells. The backbone of the tree

*To whom correspondence should be addressed. Tel: +1 4109553517; Fax: +1 4109550958; Email: hji@jhu.edu

C© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://github.com/zji90/TSCAN


e117 Nucleic Acids Research, 2016, Vol. 44, No. 13 PAGE 2 OF 17

is extracted to serve as the pseudo-time axis to place cells
in order. A similar unsupervised spanning-tree approach
has also been used previously for analyzing flow cytometry
data (15). As an unsupervised approach, pseudo-time re-
construction based on spanning trees does not require any
prior information on cell ordering. When temporal order
information is available, an alternative approach to analyz-
ing single-cell gene expression dynamics is to use such in-
formation to supervise the analysis. An example of this su-
pervised approach is SCUBA (16). SCUBA uses bifurca-
tion analysis to recover biological lineages from single-cell
gene expression data collected from multiple time points.
Here, the multiple time points in a time course experiment
are used to supervise the cell ordering and analyses of gene
expression dynamics in cell differentiation processes. By us-
ing the available time information, supervised methods can
be more accurate than unsupervised methods. However, in
applications where time information is not available (e.g. if
one needs to analyze a heterogeneous cell population from
a single disease sample rather than from a time course ex-
periment), the supervised approach is not applicable and
one has to rely on unsupervised methods. For these reasons,
both supervised and unsupervised methods are useful. The
primary focus of this article is the unsupervised approach.

One potential limitation of Monocle is that its tree is con-
structed to connect individual cells. Since the cell number is
large, the tree space is highly complex. Tree inference in such
a complex space is associated with high variability and can
be highly unstable. As a result, the optimal tree found by
the algorithm may not represent cells’ true biological order.
This can be illustrated using a toy example in Figure 1A–C.
Here dots represent cells placed in a two dimensional space
(e.g. the space corresponding to the top two principal com-
ponents of the gene expression profiles), and the true bio-
logical time runs top-down vertically. The MST solution is
not unique. Figure 1A and B show two possible solutions.
When a slight measurement noise pushes the cell labeled by
‘*’ away from other cells, the tree in Figure 1A can easily be-
come a better solution based on the MST algorithm. How-
ever, this solution places cells in an order different from their
true biological order. One approach that may alleviate this
problem is to reduce the complexity of the tree space. This
is analogous to the bias-variance tradeoff in the statistics
and machine learning literature. For instance, if one clusters
similar cells together as in Figure 1C and then constructs a
tree to connect the cluster centers, recovering the true time-
axis becomes easier. In this article, we exploit this idea to
develop Tools for Single Cell Analysis (TSCAN), a new tool
for pseudo-time reconstruction. One additional advantage
offered by clustering cells is that users can more easily ad-
just the order of tree nodes (i.e. cell clusters) manually if they
want to do so, since the number of clusters usually is not big.
By contrast, manually specifying the order of hundreds of
cells is much more difficult.

Another limitation of existing tools is that they are mostly
command-line driven and do not allow users to interactively
adjust or fine-tune the analysis. For example, users often
want to use their existing knowledge such as marker genes
to filter out contamination cells, determine the time origin
or manually change the order of certain tree nodes. How-
ever, these operations are not convenient for a command-

line driven software tool such as Monocle. TSCAN ad-
dresses this limitation by providing a graphical user inter-
face (GUI) (Figure 2). Using the GUI, users can interac-
tively and conveniently incorporate prior biological infor-
mation into the pseudo-time reconstruction analysis.

Last but not least, when several different pseudo-time re-
construction methods are available, being able to evaluate
and compare them to identify the best solution is important.
However, how to evaluate different pseudo-time reconstruc-
tion methods is also an open problem. Objective measures
for comparing different methods are still lacking. This ar-
ticle introduces several quantitative measures for evaluat-
ing different cell ordering methods. Using these objective
measures, we show that TSCAN is capable of providing
more reliable unsupervised pseudo-time reconstruction re-
sults compared to alternative methods.

MATERIALS AND METHODS

Problem formulation

Consider a representative sample of N cells drawn from a
heterogeneous cell population. Suppose the transcriptome
Yi of each cell i ∈ {1, 2, . . . , N} has been profiled using
single-cell RNA-seq. Here, Yi is a G dimensional vector
consisting of gene expression measurements for G genes.
Assume that Yi is appropriately transformed (e.g. by tak-
ing logarithm) and normalized across cells. The single cell
ordering problem, also called pseudo-time reconstruction,
is to place cells in an order based on the gradual transition
of Yi .

TSCAN orders cells in three steps. First, cells with similar
gene expression profiles are grouped into clusters. Second,
a MST is constructed to connect all cluster centers. Finally,
cells are projected to the tree backbone to determine their
pseudo-time and order (Figure 1D). Once cells are ordered,
users may use the ordered sequence to study cell state tran-
sition and gene expression dynamics in the underlying bio-
logical process from which the cells are sampled.

Preprocessing

Before pseudo-time reconstruction, the raw gene expression
data are processed as follows. First, genes with zero read
count in all samples are excluded. Second, in order to al-
leviate the effect of drop-out events (20) on the subsequent
analyses, genes with similar expression patterns are grouped
into clusters by hierarchical clustering (using Euclidean dis-
tance and complete linkage). The number of clusters is set
to be 5% of the total number of genes with non-zero expres-
sion. For each cluster and each cell, the expression mea-
surements of all genes in the cluster are averaged to pro-
duce a cluster-level expression which will be used for sub-
sequent MST construction. The drop-out event refers to
the phenomenon that expressed genes, some of which are
highly expressed, may have zero read count in some cells
as their molecules may not be captured and amplified by
chance. This is a common phenomenon in single-cell RNA-
seq data. By averaging across many genes, the cluster-level
expression is more stable and has smaller estimation vari-
ance compared to the measurements of individual genes.
This can help to dilute the impact of drop-out events.
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Figure 1. TSCAN Overview. (A–B) A toy example illustrating a limitation of cell-based MST. Here cells (blue circles) are placed in a two dimensional
space, and the true biological time runs top-down. An MST that connects cells is not unique. Both (A) and (B) are possible solutions. (B) is more consistent
with the truth. However, in reality, random measurement noise may shift the cell labeled by ‘*’ away from other cells as indicated by the arrow and dashed
lines. As a result, (B) is no longer an MST. The MST in (A) on the other hand does not reflect the true order of cells. (C) The true time-axis can be found
if one first groups similar cells into clusters and then constructs an MST to connect cluster centers. (D) TSCAN first constructs cluster-based MST (five
clusters of cells encoded by different colors are shown as an example; numbers indicate cluster centers). The tree can have multiple paths (e.g. 1-2-3-4 or
1-2-3-5). TSCAN orders cells along each path by projecting each cell onto the tree edge. (E) The number of principal components to retain is determined
by finding the best piecewise linear fit consisting of two lines (dashed).

After gene clustering, single-cell transcriptome for cell i
becomes a H dimensional vector Ei . Here, H is the num-
ber of gene clusters. Ei still has high dimension, and many
components in this vector are still correlated. The dimen-
sionality makes visualization and statistical modeling diffi-
cult. For this reason, TSCAN further reduces the dimension
of Ei using principal component analysis (PCA). Briefly, Ei
from all cells are organized into a H × N matrix E. Each
row corresponds to a gene cluster. The matrix is standard-
ized such that expression values within each row have zero
mean and unit standard deviation. Then PCA is run on the
standardized matrix, and the top K principal components
(PCs) are retained. After PCA, the H dimensional vector
Ei is mapped to a lower dimensional space and becomes a
K dimensional vector Ẽi . Here, K is much smaller than H.

In order to determine K (i.e. how many PCs to retain),
TSCAN uses the following criterion. First, let �i be the data

variance explained by the ith PC. Define vi ≡ √
λi . vi is a

non-increasing function of i. This function can be approxi-
mated using a continuous piecewise linear model vi = f(i) +
ε where ε represents noise and f(i) consists of two regression
lines (Figure 1E):

f (i ) =
{
α0 + α1 ∗ i if i ≤ k
β0 + β1 ∗ i if i > k

s.t. α0 + α1 ∗ k = β0 + β1 ∗ k (1)

TSCAN computes the least squares fit of this model using
the first 20 PCs. The fitted model varies when one changes
k. TSCAN tries different k ∈ [2, 19] and finds the k that
produces the smallest squared error,

∑20
i=1 [vi − f (i )]2. This

k will be used as the number of PCs to retain.
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Figure 2. TSCAN graphical user interface. Left panel contains function menus and tools for setting parameters. Right panel displays data and results. The
top scatter plot shows the MST constructed for the LPS data (see Results). Cells (dots) are displayed based on their first two principal components. Clusters
of cells are indicated by different colors. Numbers are cluster centers. Expression level of a marker gene BCL3 is shown for each cell. Larger marker size
means higher expression. The bottom plot shows the average BCL3 expression for each tree node, standardized across all nodes to have zero mean and
unit standard deviation.

Cell clustering

After dimension reduction, cells with similar expression
profiles are grouped into clusters using the model-based
clustering approach described in (21). The clustering is per-
formed using the mclust (22) package in R which fits a mix-
ture of multivariate normal distributions to the data Ẽi . The
variance-covariance matrix for each normal component in
this mixture is designated as ‘ellipsoidal, varying volume,
shape and orientation’. The number of clusters is chosen by
mclust using the Bayesian Information Criterion (BIC). Af-
ter model fitting, the posterior probability that each cell be-
longs to each cluster can be computed. Cells are assigned
to clusters based on the largest posterior probability. For
each cluster, the cluster mean of Ẽi is treated as the cluster
center. Instead of using the cluster number determined by
mclust based on BIC, users also have the option to specify
their own cluster number.

Ordering cell clusters by MST

Next, TSCAN constructs a minimum spanning tree to
connect all cluster centers. In a connected and undirected
graph, a spanning tree is a subgraph that is a tree and con-
nects all the vertices (or ‘nodes’). Suppose each edge in
the graph has a length equal to the Euclidean distance be-
tween the two nodes (i.e. cluster centers) connected by the
edge. A MST is a spanning tree with the smallest total edge
length among all possible spanning trees. Unlike the MST
approach used by Monocle where the tree is constructed to
connect individual cells, the MST in TSCAN is constructed
to connect clusters of cells. Clustering cells reduces the vari-
ability and complexity of the tree space. The cluster level
MST therefore may yield better and more stable estimates
of the tree backbone which largely determines the cell order-
ing. Another advantage of clustering is that it dramatically
reduces the number of tree nodes, so that it becomes eas-
ier for users to interactively fine-tune the analysis later (e.g.
manually adjust the order of tree nodes).
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A tree may have multiple branches. By default, we de-
fine the main path of the tree (solid lines in Figure 1D) as
the path with the largest number of clusters. If more than
one path has the same largest number of clusters, the path
with the largest number of cells becomes the main path. The
main path has two ends. Without other information, one
end will be randomly picked up as the origin of the path.
Alternatively, users can specify one end as the origin them-
selves using information such as marker gene expression.
After the main path and its origin are determined, TSCAN
will enumerate all branching paths starting from the origin.
For instance, assume cluster 1 in Figure 1D is chosen as the
origin, then TSCAN will report a main path 1-2-3-4 and a
branching path 1-2-3-5. If the cluster order generated by the
algorithm is not satisfactory to users, they have options to
manually specify the paths and the order of clusters along
each path.

Cell ordering and pseudo-time calculation

Once the cluster-level ordering is determined, individual
cells are projected onto tree edges to create cell-level order-
ing along the main path and each branching path. For each
path, all clusters on the path are collected. All cells in these
clusters will be ordered along the path as follows. Let Ci (i
= 1, 2, ..., M) indicate the ordered clusters, where M is the
number of clusters on the ordered path. Suppose Ẽ(i ) and
Ẽ( j ) are the cluster centers for two neighboring clusters Ci
and Cj in the path, and suppose Ci precedes Cj in the order-
ing. The edge that connects the two clusters is determined
by vi j = Ẽ( j ) − Ẽ(i ), and the projection of cell k to the edge is
determined by the inner product vT

i j Ẽk/||vi j || where ||.|| is the
l2-norm of a vector. Cells in cluster C1 are all projected onto
the edge that connects C1 and C2. Cells in cluster CM are all
projected onto the edge that connects CM − 1 and CM. Cells
from an intermediate cluster Cm(1 < m < M) are divided
into two groups according to whether they are closer to the
center of cluster Cm − 1 or to the center of cluster Cm + 1 in
terms of Euclidean distances. Cells closer to the center of
cluster Cm − 1 are projected onto the edge that connects clus-
ters Cm − 1 and Cm, while cells closer to the center of cluster
Cm + 1 are mapped to the edge connecting clusters Cm and
Cm + 1.

Cell orderings are determined in three steps. First, for
cells which are in the same cluster and are projected onto
the same edge, their order is determined by the projected
values on the edge. Second, within each cluster, the order
of cells projected onto different edges is determined by the
order of edges, which is given by the cluster-level ordering.
Third, the order of cells in different clusters is determined
by the order of clusters. In this way, all cells can be placed
in order.

Once cells are ordered, pseudo-time is computed for each
ordered path. For a given path, the order of a cell on the
path is set to be its pseudo-time. For instance, the pseudo-
time for the kth cell on a path is set to k. The pseudo-time is
constructed separately for the main path and each branch-
ing path.

Detecting differentially expressed genes

After cells are ordered, one can detect differentially ex-
pressed genes following the approach in Monocle (8). A
generalized additive model (GAM, effective degrees of free-
dom = 3) (23) is fitted for each gene to describe the func-
tional relationship between its expression and pseudo-time.
The GAM is fitted using the mgcv (23) package in R. The
model is then compared to a null model that assumes con-
stant expression along the pseudo-temporal path. The P-
value is computed using a likelihood ratio test and then
converted to false discovery rate (FDR) using the method
in (24). By default, genes with FDR <0.05 are reported as
differential. As in Monocle, the P-value and FDR are com-
puted based on assuming that cell ordering is given. They do
not consider uncertainties in cell ordering and that, instead
of being determined by experiment design, cell ordering is
derived from the same data used for analyzing differential
expression. We note that how to evaluate statistical signifi-
cance that further accounts for these additional uncertain-
ties remains an open problem. It requires development of
more sophisticated methods and a systematic investigation
of how these additional uncertainties affect different meth-
ods (e.g. how P-values change when one treats cell ordering
as an unknown parameter inferred from the data). These
investigations are beyond the scope of the current study as
the main focus of this article is how to improve and evaluate
cell ordering.

Method evaluation

We use three methods to evaluate cell ordering performance.
The first approach evaluates cell ordering accuracy based
on the ordering expected by independent sources of infor-
mation. It is assumed that external information not used in
pseudo-time reconstruction is available to evaluate the pair-
wise order of cells. Formally, let � denote an ordered path of
N� cells produced by a particular pseudo-time reconstruc-
tion method. Let g(�, i, j) be a score that characterizes how
well the order of the ith and jth cells in the ordered path �
matches their expected order based on the external informa-
tion. We define pseudo-temporal ordering score (POS) for
cell ordering � as the sum of g(�, i, j) for all pairs of cells:

POSπ =
Nπ −1∑
i=1

∑
j : j>i

g(π, i, j ) (2)

Cell orderings � produced by different pseudo-time recon-
struction methods can then be compared based on the POS
score.

As a concrete example, suppose one has single-cell RNA-
seq data collected from a time course experiment. In such an
experiment, the data collection time is known. For the pur-
pose of evaluating unsupervised pseudo-time reconstruc-
tion methods, one can pool cells from all time points to-
gether, pretend that the data collection time for each cell
is unknown, and apply different methods to reconstruct
pseudo-time. Different methods will then be evaluated by
comparing their cell ordering results to the order of cells
based on the true data collection time. For instance, if one
has N cells collected at V time points during a differentia-
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tion process. Among the N cells, Nv cells are from time Tv
(T1 < T2 < ··· < TV). Consider the ith cell and the jth cell
in the ordered path � where i precedes j (i.e. i < j). One can
define the pairwise score g(�, i, j) as follows:

1. If the two cells are originally collected at the same time
point (e.g. they are both from Tv), then g(�, i, j) = 0.

2. Otherwise, if the ith cell is collected from time point Tv
and the jth cell is collected from time point Tu, then g(�,
i, j) = (u − v)/D�. The value u − v is positive if v repre-
sents an earlier time point, or negative if v represents a
time later than u.

The denominator D� above is chosen to normalize POS
so that POS� ∈ [ − 1, 1] (i.e. the maximal and minimal POS
among all possible orderings of cells within each path � is
1 and −1, respectively). Based on this definition, a cell or-
dering more consistent with the known data collection time
will have higher POS score. POS� = 1 indicates that the
order of cells produced by pseudo-time reconstruction per-
fectly matches the order determined by the data collection
time. POS� = −1 indicates that the order of cells produced
by pseudo-time reconstruction is in the opposite direction
compared to the order determined by the data collection
time. Using POS to evaluate cell ordering is based on as-
suming that the external information (i.e. the true data col-
lection time in this example) can roughly reflect the true bi-
ological order of cells (e.g. the differentiation stage of cells).
In reality, since cells collected at each time point are het-
erogeneous, it is possible that some cells collected at an ear-
lier (less differentiated) time point in the differentiation time
course are actually more differentiated than certain cells
collected at a later time point. Despite this, it is often rea-
sonable to expect that cells collected at the earlier time point
‘on average’ should be less differentiated than cells collected
at the later time point. Therefore, the external information
(i.e. the data collection time) used here can still roughly re-
flect the true biological order of cells and can be used as a
surrogate to evaluate the cell ordering performance.

The second approach evaluates robustness of cell order-
ing by perturbing the original single-cell RNA-seq data set
(see below). Each cell ordering method is applied to both
the original data set and the perturbed data. Cell orderings
produced by the original and perturbed data are then com-
pared. To quantify the similarity between cell orderings in
two pseudo-temporal paths �1 and �2, let A be the union
of cells in �1 and �2, let |A| be the cardinality of A (i.e. the
number of distinct cells in �1 and �2), and define the simi-
larity score between �1 and �2 as:

sπ1,π2 = 2
|A|(|A| − 1)

∑
i, j∈A;i �= j

h(π1, π2, i, j ) (3)

Here, h(�1, �2, i, j) = 1 if the order of two cells i and j re-
mains the same in �1 and �2 (i.e. i appears before or after
j in both orderings), and h(�1, �2, i, j) = 0 otherwise. If ei-
ther i or j occurs only in one path (e.g. i is in �1 but not �2),
the orderings between i and j in �1 and �2 are viewed as
inconsistent, and h(�1, �2, i, j) is also set to zero. A higher
similarity score indicates that the two orderings �1 and �2

are more similar to each other, whereas a lower score indi-
cates a larger deviation between the two orderings.

In this article, two different approaches were used to per-
turb data: cell-level perturbation and expression-level per-
turbation. For cell-level perturbation, x percent (x = 95%,
90% or 75%) of cells were randomly sampled from the
original data set to serve as the perturbed data. The gene
expression profile of each cell remained unchanged. For
expression-level perturbation, we retained all cells in the
original data set but added simulated noise to their gene
expression profiles (i.e. Y). To generate noise, the average
expression value of each gene across all cells was computed
and then subtracted from the gene’s expression value in each
cell. Residuals obtained in this way were scaled by multi-
plying with a scaling factor � (� = 5%, 10% or 25%). The
scaled residuals were then permuted and added back to the
original expression values of the gene. For each perturba-
tion method and parameter value (x or �), the original data
were independently perturbed 100 times to generate 100
perturbed data sets. For each perturbed data set, similar-
ity score between the original and perturbed orderings was
computed. Finally, the average similarity score from the 100
perturbations was calculated to measure the robustness of
each pseudo-time reconstruction method.

The third approach evaluates the ability of a cell order-
ing method to detect known differentially expressed genes
along the ordered cell path. Given a test data set, one can
collect genes known to be differentially expressed along the
biologically ordered sequence of cells and treat them as the
gold standard. One can then detect differential genes along
the pseudo-time axis and compare different methods based
on how they rank gold standard genes.

TSCAN package and GUI

TSCAN is implemented as a Bioconductor package us-
ing the statistical programming language R. It can be run
both in a command-line mode and through a GUI. The
GUI is developed using the shiny package in R. It al-
lows users to conveniently construct, visualize and tune
cell ordering. For example, one can use the GUI to in-
teractively trim unwanted cells based on expression lev-
els of user-specified marker genes. One can also change
the cluster-level ordering and then recompute the pseudo-
time. TSCAN is open source, and it is freely available at
https://github.com/zji90/TSCAN. Its bioconductor pack-
age can be downloaded from http://www.bioconductor.
org/packages/release/bioc/html/TSCAN.html. An installa-
tion guide is provided in Supplementary Materials.

Data sets

Three data sets were compiled from the literature to evalu-
ate TSCAN. The first data set consists of single-cell RNA-
seq samples from differentiating human skeletal muscle my-
oblasts (HSMM) (8). It contains 271 cells collected at 0, 24,
48 and 72 h after switching human myoblasts to low serum.
The second data set consists of single-cell RNA-seq sam-
ples collected after stimulating bone-marrow-derived den-
dritic cells by lipopolysaccharide (LPS) (25). A total of 306
cells collected at 1, 2, 4 and 6 h after the stimulation were

https://github.com/zji90/TSCAN
http://www.bioconductor.org/packages/release/bioc/html/TSCAN.html
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used for our analysis. The third data set consists of single-
cell RNA-seq samples from hippocampal quiescent neural
stem cells (qNSC) (26). It contains 172 cells collected from
the same cell population. For all data sets, the normalized
gene expression values (fragments per kilo base pairs per
million total reads for HSMM and transcripts per million
total reads for LPS and qNSC) were log2 transformed af-
ter adding a pseudo-count of 1. After the raw data Yi were
processed to Ei , Ei was used as input for different meth-
ods (i.e. TSCAN, Monocle, Waterfall, SCUBA and Wan-
derlust below) to construct pseudo-time. The normalized
data for Yi and Ei are available at the TSCAN GitHub web-
site (https://github.com/zji90/TSCANdata). The correspon-
dence between sample identifiers and sample collection time
in the experiment is provided in Supplementary Table S1.

Comparisons with other methods

Supplementary Table S2 compares TSCAN with a num-
ber of other single cell data analysis methods. Among these
methods, MARS-seq (17) and SINCE-PCR (19) do not
have associated software for others to use. SPADE (15) and
viSNE (13) are developed for analyzing mass cytometry or
flow cytometry data, and they do not provide a cell ordering
function. Diffusion map (27) is a dimension reduction tech-
nique used to define differentiation trajectories. It cannot
perform cell ordering itself. The scLVM method (18) pri-
marily focuses on identifying cell subpopulations. Again, it
cannot order cells. For the above reasons, these methods are
not compared with TSCAN in our subsequent data analy-
ses.

Among the remaining methods, Monocle is designed to
handle unsupervised cell ordering of single-cell RNA-seq
and has a software package. Wanderlust (14) is originally
developed for mass or flow cytometry data. It uses a graph-
based trajectory detection algorithm to order cells under the
assumption that there is no branch. We tailored its MAT-
LAB code to allow it to take single-cell RNA-seq data as
input. SCUBA (16), as discussed before, is a supervised ap-
proach. However, the SCUBA package also provides an op-
tion for unsupervised cell ordering which is based on fit-
ting a principal curve to the data and then mapping cells
onto the curve. Waterfall is a data analysis pipeline used by
(26) to construct pseudo-time for their qNSC data. Simi-
lar to TSCAN, Waterfall first groups cells using k-means
clustering before pseudo-time reconstruction. However, as
an in-house data analysis pipeline, Waterfall does not have
an associated software tool, and the pipeline cannot be di-
rectly used to analyze other data sets without manually edit-
ing the code. Also, an objective evaluation of the effects of
cell clustering on cell ordering was not provided in (26). A
systematic comparison among different pseudo-time recon-
struction methods discussed above is still lacking. In order
to benchmark the unsupervised cell ordering performance
of TSCAN, we compared it with Monocle, Wanderlust, un-
supervised SCUBA and Waterfall in our subsequent data
analyses.

RESULTS

We evaluated TSCAN using the three data sets, HSMM,
LPS and qNSC, described above. HSMM and LPS data

sets contain cells collected from multiple time points in time
course experiments. The actual data collection time pro-
vides important external information for evaluating cell or-
derings produced by unsupervised pseudo-time reconstruc-
tion methods. In our evaluation, cells from different time
points were pooled together. We pretended that their data
collection time were unknown. We applied different pseudo-
time reconstruction methods to order these cells. Methods
were then compared in terms of their accuracy, robustness
and ability to detect known differentially expressed genes.
Accuracy was characterized by the POS score computed us-
ing cells’ actual data collection time. Robustness was char-
acterized by the cell ordering similarity between the original
and perturbed data. In the qNSC data set, all cells were col-
lected from the same cell population. Since there was no ex-
ternal information such as multiple time points to calculate
the POS score, we only evaluated robustness and the ability
to detect known differentially expressed genes in this data
set.

HSMM analysis using a priori chosen genes for pseudo-time
reconstruction

We first evaluated the performance of TSCAN using the
HSMM data set, originally analyzed by (8) using Mon-
ocle. In the original Monocle analysis conducted by (8),
the pseudo-time was constructed using 518 genes chosen a
priori before ordering the single-cell RNA-seq data. These
genes were derived by comparing different differentiation
time points and therefore are known to be associated with
myoblast differentiation. They represent a strong piece of
prior knowledge for pseudo-time reconstruction. In real ap-
plications, if one has strong prior information such as these
518 genes, one can use them as the input (to replace Ei )
for TSCAN and Monocle to construct MST. We first per-
formed analyses in this way by using the same 518 genes
for pseudo-time reconstruction. Figure 3A and B show the
cluster-level MST constructed by TSCAN. Consistent with
the original Monocle results reported in (8), TSCAN also
detected two branches of biological process: the default
main path 1-3-5-2 and a branching path 1-3-5-4. For the
main path 1-3-5-2, neither Monocle nor TSCAN can deter-
mine whether node 1 or 2 should be the starting time point
without other information. Therefore, the path has two pos-
sible directions. By default, TSCAN randomly picks one di-
rection. However, if users have marker genes to inform the
direction of the pseudo-temporal path, they can use this in-
formation in TSCAN. To illustrate, ENO3 is a marker gene
for myoblast differentiation. Its expression is expected to
increase as the differentiation progresses. After providing
ENO3 as a marker gene, TSCAN displays its expression in
each tree node. In this way, one can see that cluster 1 has
low ENO3 expression while cluster 2 has high ENO3 ex-
pression (Figure 3C). Thus, the starting time point should
be in cluster 1. As reported in (8), the branching path in the
MST constructed by Monocle was driven by contaminating
interstitial mesenchymal cells, and SPHK1 is a marker gene
for these contaminating cells. Consistent with this, display-
ing SPHK1 expression in the TSCAN tree nodes shows that
cluster 4 in the branching path 1-3-5-4 had high SPHK1 ex-
pression (Figure 3D), indicating that this branch was driven

https://github.com/zji90/TSCANdata
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Figure 3. TSCAN analysis in HSMM data set using 518 a priori chosen genes for pseudo-time reconstruction. (A) MST reported by TSCAN is shown
in the three-dimensional space spanned by the first three PCs of E. (B) Users can display cells and MST in chosen PCs (e.g. PC1 and PC2). (C) Mean
expression level of ENO3 in each cluster. (D) Mean expression level of SPHK1 in each cluster. Values in (C) and (D) are both standardized across all
clusters to have zero mean and unit SD.

by contaminating cells. Thus, the branching path 1-3-5-4
was not further analyzed.

For both Monocle and TSCAN, we calculated the POS
score along their reported main path. The cell ordering
along each path reported by each method is provided in
Supplementary Table S3. According to (8), the main path
produced by Monocle in this analysis corresponds to my-
oblast differentiation which is the biological process of in-
terest. Figure 4A shows the POS scores. TSCAN outper-
formed Monocle in terms of the POS.

In order to understand how cell clustering affects the cell
ordering performance, we tested a modified TSCAN (no-
cluTSCAN) in which the cell clustering step was skipped
and MST was constructed directly to connect individual
cells based on Ẽi . The analyzed path and direction were then
determined as above by using SPHK1 to exclude the con-
tamination path and using ENO3 to determine the time ori-
gin. The comparison between TSCAN and nocluTSCAN
was well-controlled since everything was the same for these

two algorithms except for the use of cell clustering by
TSCAN. By contrast, the performance difference between
Monocle and TSCAN represents a combined effect of many
factors since many of their implementation details are dif-
ferent. Many of these differences are difficult to control for
as they are hidden in the computer code.

We also tested a marker-gene-only approach (marker) in
which cells are directly ordered using the expression level
of a marker gene (ENO3). Here, in order to conduct a
relatively fair comparison with TSCAN, the marker-gene-
only approach was only applied to cells from the analyzed
TSCAN path (i.e. 1-3-5-2), and cells from the contaminated
TSCAN branch (i.e. the branch with cluster 4) were ex-
cluded from this analysis. This yielded cell orderings in Sup-
plementary Table S3. The comparison between the marker-
gene-only approach and TSCAN can reveal whether the
other genes used for pseudo-time reconstruction contribute
additional information not provided by the marker gene (i.e.
ENO3 in this example) for ordering cells.
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Figure 4. Evaluation results for different methods in HSMM data set where pseudo-time was constructed based on 518 a priori chosen genes. (A) POS
score. (B) Robustness measured by the average similarity score from 100 independent perturbations. The heat map shows robustness of each method in
each perturbation scheme. Cell Perturb: cell-level perturbation. Expr Perturb: expression-level perturbation. (C) Mean rank of gold standard genes. (D)
Number of detected gold standard genes among top differential genes.

As shown by Figure 4A, TSCAN had the best perfor-
mance based on POS. It not only performed better than
Monocle, but also outperformed nocluTSCAN and the
marker-only approach, indicating that cell clustering and
using multiple genes for ordering cells were both helpful for
improving the pseudo-time reconstruction.

Next, we compared robustness of different methods
based on cell ordering similarity between the original and
perturbed data. Figure 4B shows the similarity scores
when the perturbed data were generated by randomly
subsampling 75%, 90% or 95% of cells from the orig-
inal data set (cell-level perturbation) or by adding 5%,
10% or 25% random noise to the original gene expres-
sion values (expression-level perturbation). For each per-
turbed data set, the same protocol and marker genes as de-
scribed above were used to determine the path direction and
eliminate contaminating branch. Compared to Monocle
and nocluTSCAN, TSCAN consistently produced higher
similarity scores in all perturbation schemes (Figure 4B).
This shows that cell clustering increased the stability (or
equivalently, reduced the variability) of cell ordering when
data were perturbed. The marker-gene-only approach was
also more robust than Monocle and nocluTSCAN, and it
showed similar level of robustness compared to TSCAN
(Figure 4B). The robustness of the marker gene approach
was not unexpected. For cell-level perturbation, genes’ ex-
pression values in each cell did not change. Consequently,
the order of any pair of cells based on a marker gene’s
expression remained the same. The difference between the
pseudo-temporal path in the original data and the path in
the perturbed data in the marker gene approach mainly
reflects the fact that these two paths did not contain the
same set of cells. Note that not all cells in the original data

were retained in the perturbed data set. Also, contaminat-
ing branches of MST constructed by TSCAN were excluded
from our marker-gene-only analyses, and the contaminat-
ing branches in the original and perturbed data could con-
tain different sets of cells. For expression-level perturbation,
noises added to gene expression values represented 5–25%
of the cross-cell variation of the true biological signal. Con-
sequently, the pairwise order of many cells was still driven
by the biological variation and hence remained unchanged
in the marker-gene-based ordering.

It is important to point out that robustness alone is not
sufficient to indicate good cell ordering performance. For
instance, suppose each cell has an arbitrary name. If cells
are ordered based on cell name rather than gene expression
profile, the order of any pair of cells will remain the same
regardless of how gene expression values are perturbed. As
a result, the cell ordering is robust, but it does not have any
biological meaning since the cell names are arbitrary. This
is similar to the well-known variance-bias tradeoff in statis-
tics: an estimator with zero variance may have huge bias.
For this reason, robustness of a pseudo-time reconstruction
method needs to be interpreted in the context of whether it
leads to improved cell ordering accuracy (e.g. increased POS
score). Although the marker-gene-only approach was more
robust than Monocle and nocluTSCAN (Figure 4B), its cell
ordering accuracy was lower than Monocle and TSCAN
(Figure 4A), indicating that its bias-variance tradeoff is not
optimal. By contrast, TSCAN was not only more robust
(Figure 4B) but also ordered cells more accurately (Figure
4A) than Monocle and nocluTSCAN.

For each method, we next detected differentially ex-
pressed genes along the ordered main path of cells. We
ranked genes based on FDR, and then different methods
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were compared based on their ability to find genes known
to be involved in the biological process in question. For the
HSMM data set, we compiled 13 genes (ENO3 excluded)
known to be involved in myoblast differentiation accord-
ing to (8) (Supplementary Table S4). Figure 4C shows the
mean rank of these gold standard genes in the differential
gene analysis. A smaller mean rank indicates better perfor-
mance (i.e. gold standard genes are more likely to be ranked
on top). Figure 4D shows the number of gold standard
genes found in the top 200, 400, . . . , 2000 genes ranked by
each method. Monocle and TSCAN had very similar re-
sults in this analysis, and both methods outperformed no-
cluTSCAN and the marker gene approach.

Besides TSCAN, we investigated two other ways to
perform cell-clustering-based pseudo-time reconstruction.
First, we replaced mclust by k-means clustering in the cell
clustering step of TSCAN while keeping all other proce-
dures the same (k-means TSCAN). Unlike mclust which al-
lows ellipsoidal shape of clusters, k-means clustering only
allows clusters with circle shape. In order to determine the
cluster number of k-means, we used an approach similar to
Figure 1E, with its y-axis changed to the proportion of to-
tal data variance unexplained by the cluster structure (Sup-
plementary Materials). Second, we tested the Waterfall al-
gorithm (26) which also uses k-means to cluster cells before
cell ordering (Supplementary Materials). Waterfall does not
provide a way to choose cluster number based on the data.
Its cluster number was fixed to 10 which is the default value
in Waterfall codes. Both the k-means TSCAN and Wa-
terfall produced more robust cell ordering than Monocle
and nocluTSCAN (Figure 4B). However, their cell order-
ing accuracy did not outperform Monocle and was clearly
worse than TSCAN, as indicated by the POS score (Figure
4A) and differential gene detection performance (Figure 4C
and D). This suggests that although k-means TSCAN and
Waterfall reduced the cell ordering variability, their bias-
variance tradeoff was not optimal for improving the cell or-
dering accuracy.

We also tested unsupervised SCUBA (i.e. the principal-
curve-based SCUBA) and Wanderlust. For SCUBA, low
expression of the marker gene ENO3 was used to determine
the path origin. Wanderlust was run by using the cell with
the highest ENO3 gene expression as the path origin (be-
cause the lowest ENO3 expression was zero, and zero oc-
curred in many cells, making the choice of path origin not
unique). The cell ordering reported by Wanderlust was then
reversed so that the reversed path had low ENO3 expres-
sion at the beginning and high ENO3 expression at the end.
The same approach was also used in other test data sets
below to run the Wanderlust analyses. For both methods,
after cells were ordered, GAM was used to detect differen-
tially expressed genes as in TSCAN. Both Wanderlust and
SCUBA were more robust than Monocle and nocluTSCAN
(Figure 4B). However, they both had lower cell ordering ac-
curacy compared to TSCAN (Figure 4A, C and D). In fact,
TSCAN produced the highest POS score (Figure 4A) and
best differential gene detection performance (Figure 4C and
D).

As demonstrated in (8), cell orderings based on pseudo-
time may reveal gene expression patterns that cannot be dis-
covered by bulk gene expression data. MEF2C and MYH2

are two genes involved in the HSMM differentiation. It
is known that these two genes should have increasing ex-
pression during the differentiation, and the expression of
MEF2C should start increasing earlier than the increase of
MYH2 (8). Based on the average bulk gene expression at
different time points, it was not clear that MEF2C had a
monotone increasing pattern, nor was it clear which gene
started to increase first (Supplementary Figure S1). By con-
trast, all single-cell analysis methods tested here were able
to recover the overall increasing pattern of MEF2C and
MYH2 along their analyzed pseudo-time axes, although in
Monocle, k-means TSCAN, Waterfall, SCUBA and Wan-
derlust, MEF2C decreased a little before increasing (Sup-
plementary Figure S2). Compared to the other methods,
the temporal expression curves fitted by TSCAN and no-
cluTSCAN more clearly showed that MEF2C increased
earlier than the increase of MYH2 (Supplementary Figure
S2).

Based on all the analyses above, TSCAN was the method
that provided the best overall performance. It offered
the best cell ordering accuracy among all tested methods
and improved cell ordering robustness compared to meth-
ods without using cell clustering (i.e. Monocle and no-
cluTSCAN).

HSMM analysis without using a priori chosen genes for
pseudo-time reconstruction

In real applications, the prior information for pseudo-time
reconstruction such as the 518 genes used above is not al-
ways available. When no such prior information is available,
pseudo-time reconstruction has to rely on all genes in the
RNA-seq data. To evaluate the performance of TSCAN in
such a scenario, we repeated the previous analysis but con-
structed pseudo-time without using the 518 a priori chosen
genes. Instead, the Ei used for TSCAN was derived from
all genes in the single-cell RNA-seq data using the proto-
col described in Materials and Methods. We also used Ei
instead of Yi as the input for Monocle, Waterfall, SCUBA
and Wanderlust in order to make the method comparison
relatively fair. Of note, the dimensionality of Yi was also
beyond the capacity that the Monocle software was able to
handle.

Pseudo-temporal paths generated by different methods
are provided in Supplementary Table S3. The default main
path given by TSCAN (Figure 5A, path 3-1-2) contained a
cluster of cells with high expression in SPHK1 (Figure 5D),
indicating that the main path was contaminated by intersti-
tial mesenchymal cells and may not reflect myoblast differ-
entiation. In such a scenario, TSCAN allows users to man-
ually tune the analysis. For instance, with the GUI, one can
conveniently visualize the expression of marker genes (Fig-
ure 5B) such as SPHK1 (Figure 5D, marker for contam-
ination) and ENO3 (Figure 5E, marker for myoblast dif-
ferentiation). Since SPHK1 is highly expressed in cluster 3,
we chose to study path 2-1-4 which represents the myoblast
differentiation. According to the increasing ENO3 pattern,
one can specify that cluster 2 should be the path origin. Al-
ternatively, one can also manually define a path by specify-
ing the clusters and their order in the path (Figure 5C). In
this example, both ways yielded the same path 2-1-4. Simi-
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Figure 5. Demonstration of GUI and TSCAN analysis of HSMM data using all genes for pseudo-time reconstruction. (A) MST constructed by TSCAN
using all genes. (B) Users can choose a marker gene in GUI to visualize its expression. (C) Users can define a path by specifying the clusters to include and
their ordering. (D) The average expression of SPHK1 in each cluster. (E) The average expression of ENO3 in each cluster.

lar to TSCAN, the main path in Monocle was also contam-
inated by cells with high SPHK1 expression (Supplemen-
tary Table S3). However, Monocle does not provide an in-
terface to help users conveniently incorporate such marker
gene information and tune ordering. Users would need to
be experienced in programming in order to adjust the anal-
ysis. In comparison, the TSCAN GUI allows users unfa-
miliar with programming to visualize and tune the order-
ing. Therefore, it lowers the bar for users to customize the
pseudo-time analyses and can save them time and effort.

After using high expression of SPHK1 to exclude the con-
taminating branch and using low expression of ENO3 to
determine the origin of the pseudo-temporal path for each
method (Supplementary Table S3), different methods were
then compared.

In terms of cell ordering accuracy, TSCAN had the high-
est POS score (Figure 6A) and the best mean rank of gold
standard genes (Figure 6C) among all methods. It also had
the highest power for detecting the gold standard differ-

ential genes (Figure 6D). In terms of robustness, methods
based on cell clustering (TSCAN, k-means TSCAN, Water-
fall) were more robust than methods that did not use cell
clustering (Monocle, nocluTSCAN), as shown by the in-
creased similarity scores between the original and perturbed
data (Figure 6B).

Besides comparing cell orderings from the original and
perturbed data, we also compared cell orderings con-
structed using and not using the 518 prior genes. To do
so, similarity score between the cell ordering reported in
this section and the ordering reported in the previous sec-
tion was computed for each method. Supplementary Fig-
ure S3A shows that TSCAN and the marker gene approach
produced higher similarity scores than other methods, sug-
gesting that they produced the most consistent cell order-
ing results. For each method, we also compared the consis-
tency of differentially expressed genes detected by using and
not using the 518 prior genes for pseudo-time reconstruc-
tion. For each analysis (i.e. using or not using the 518 prior
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Figure 6. Evaluation results for different methods in HSMM data where pseudo-time was constructed using all genes. (A) POS score. (B) Robustness
measured by the average similarity score from 100 independent perturbations. (C) Mean rank of gold standard genes. (D) Number of detected gold
standard genes among top differential genes.

genes), we obtained the top R ranked differential genes. The
number of common genes between these two analyses was
then counted and plotted as a function of R in Supplemen-
tary Figure S3B. Supplementary Figure S3C shows a similar
analysis with a more stringent definition of common genes.
Here, any gene that did not change in the same direction
along the two pseudo-temporal paths (i.e. the fitted GAM
functions from the two analyses have negative correlation)
was not counted as a common gene even if the gene was
identified by both analyses among their top R genes. After
excluding these inconsistent genes from the common gene
list, the number of genes remained in the common gene list
was then shown as a function of R. In both Supplemen-
tary Figures S3B and S3C, TSCAN and the marker gene
approach showed higher consistency than the other meth-
ods. Compared to the marker gene approach, TSCAN cell
ordering was more accurate according to the POS score
and differential gene detection performance (Figure 6A, C
and D). Thus, our results show that TSCAN can make the
ordering results less dependent on the availability of prior
genes and at the same time provide the best accuracy com-
pared to the other methods.

When comparing the expression patterns of MEF2C and
MYH2 along the pseudo-time axis, Monocle and Wander-
lust failed to reveal the temporal order of MEF2C and
MYH2, and the increasing pattern of these genes also be-
came less clear (Figure 7). In Waterfall, MEF2C first de-
creased and then increased, and the temporal order of
MEF2C and MYH2 was not very clear. By contrast, the
other methods successfully revealed the increasing pattern
of MEF2C and MYH2 in this analysis. Their results also
more clearly show that MEF2C increased before the in-
crease of MYH2 (Figure 7).

Overall, our analyses again show that TSCAN produced
the most accurate cell ordering results, and it was more ro-
bust than methods without cell clustering.

LPS analysis

For the LPS data, we reconstructed pseudo-time without
using strong prior knowledge such as the 518 a priori chosen
genes in the HSMM analysis. The analyses were run based
on Ei which was computed using all genes following the
protocol described in Materials and Methods. All methods
only found one main path without branching paths (Supple-
mentary Table S3). To determine the direction of the path,
we used BCL3 as a marker gene. BCL3 is known to be in-
volved in the response to viral and bacterial stimulus, and
its expression level is expected to increase after LPS stimu-
lation. Figure 2 shows the expression of this marker gene in
the TSCAN GUI. Accordingly, cluster 1 was determined
as the origin of the pseudo-time axis. Comparing differ-
ent methods based on POS score again shows that TSCAN
had the best accuracy (Figure 8A, BCL3 was used as the
marker gene for the marker-gene-only approach). Methods
based on cell clustering (TSCAN, k-means TSCAN, Water-
fall) were more robust than those not using cell clustering
(Monocle and nocluTSCAN) (Figure 8B). To evaluate dif-
ferent methods based on differentially expressed genes, we
compiled 125 known marker genes (BCL3 excluded) from
(25) (Supplementary Table S4). Figure 8C and D show the
mean rank of these gold standard genes and the number of
gold standard genes found in the top ranked genes reported
by each method respectively. Again, TSCAN outperformed
all other methods.

As a specific example, Figure 9 shows the expression level
of a gold standard gene STAT2 for the LPS data (25).
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Figure 7. MEF2C and MYH2 expression patterns in HSMM data set where pseudo-time was constructed using all genes. The expression of each gene in
each cell is plotted as a function of cell order on the pseudo-time axis. The solid curves are the fitted GAM function. The dashed curve is the GAM fit for
ENO3, the marker gene used to determine the path direction.

STAT2 expression is expected to increase after LPS stim-
ulation. One can see that the TSCAN result was most con-
sistent with the known increasing pattern of STAT2. By
contrast, the increasing pattern of STAT2 was much less
clear in cell orderings produced by all the other approaches.
In Monocle, nocluTSCAN, k-means TSCAN, Waterfall,
SCUBA and Wanderlust, STAT2 first increased and then
decreased. In the marker gene approach, the increasing pat-
tern was weak compared to the high variability of cells
around the fitted curve.

qNSC analysis

Lastly, we compared different methods using the qNSC
data set. This data set does not have multiple time points
or experimental conditions. A prior gene set for cell order-
ing was also not available. We therefore run the analyses
based on Ei computed using all genes as described in Ma-
terials and Methods. All methods produced one single path
without branches. To determine the path direction, we used
FOXG1 as a marker gene. FOXG1 is known to be criti-
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Figure 8. Evaluation results for different methods in LPS data set. (A) POS score. (B) Robustness measured by the average similarity score from 100
independent perturbations. (C) Mean rank of gold standard genes. (D) Number of detected gold standard genes among top differential genes.

cally involved in proliferative adult NPCs. Low expression
of FOXG1 was used to indicate the origin of the path.

In the qNSC analysis, the POS score cannot be calculated
because external information such as data collection time
is not available. Therefore, we only evaluated each method’s
robustness and its ability to detect known differential genes.
For the differential gene analysis, 1999 known marker genes
(excluding FOXG1) were compiled from (26) to serve as the
gold standard (Supplementary Table S4). Once again, meth-
ods using cell clustering (TSCAN, k-means TSCAN, Water-
fall) improved robustness of cell ordering compared to those
without using cell clustering (Monocle, nocluTSCAN) (Fig-
ure 10A). TSCAN offered the best mean rank of gold stan-
dard genes among all methods (Figure 10B), and it also had
the highest power for detecting the gold standard differen-
tial genes (Figure 10C). Supplementary Figure S4 shows
the expression level of a gold standard gene SOX9. As a
down-regulated transcription factor, SOX9 expression is ex-
pected to decrease along the pseudo-time (26). TSCAN
and Waterfall results were consistent with this known de-
creasing pattern of SOX9, and the decreasing pattern was
most evident in TSCAN. By contrast, SOX9 expression first
increased and then decreased in Monocle, nocluTSCAN
and SCUBA. For k-means TSCAN, SOX9 expression first
decreased and then increased. For the marker-gene-only
approach and Wanderlust, SOX9 expression slightly in-
creased. Overall, TSCAN performed the best among all
methods.

The graphical user interface (GUI)

TSCAN has a GUI. As discussed above, the GUI in
TSCAN allows users to visualize marker genes and tune
main paths and cluster-level orderings. Besides these func-
tions, the GUI also provides multiple trimming criteria for

users to efficiently trim unwanted cells. For example, to ex-
clude cells with high expression in two genes PDGFRA and
SPHK1 in HSMM data set, one can set up two trimming
criteria such as PDGFRA > 1 and SPHK1 > 1 (Supple-
mentary Figure S5A) and TSCAN will exclude cells meet-
ing both criteria (Supplementary Figure S5B). Finally, the
GUI can be used to visualize expression of user-specified
genes along pseudo-time as heat maps. For example, Sup-
plementary Figure S5C visualizes the expression of two
genes CCNA2 and CCNB2 after obtaining the pseudo-time
ordering in HSMM data. Together, these functions make
the pseudo-time analyses of single-cell RNA-seq data more
convenient and user-friendly.

DISCUSSION

In summary, TSCAN offers a new tool to support pseudo-
time analysis of single-cell RNA-seq data. As demonstrated
by our results, this approach robustly provides competi-
tive performance based on different criteria. By comparing
methods using and not using cell clustering, we have shown
that cell clustering is a useful technique for reducing the
variability and improving the accuracy of the MST-based
pseudo-time analysis. Although the cell clustering idea has
also been used previously in Waterfall, a systematic evalua-
tion of the impact of cell clustering on cell ordering was not
provided in the Waterfall study (26). Besides the develop-
ment and systematic evaluation of the TSCAN algorithm,
we also developed a GUI for TSCAN. The GUI of TSCAN
provides users with the flexibility to interactively explore
and adjust the analysis results.

In order to evaluate TSCAN and other unsupervised
pseudo-time reconstruction methods, we used two time
course data sets with multiple time points, HSMM and LPS,
and intentionally avoided using any information on data
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Figure 9. STAT2 expression patterns in LPS data set. STAT2 expression in each cell is plotted as a function of cell order on the pseudo-time axis. The
orange curve is the fitted GAM function.

collection time in our pseudo-time analyses. In this way,
the data collection time can provide an independent source
of information for evaluating the accuracy of cell ordering
via POS score. Such an evaluation cannot be done if the
test data set has only one time point. This explains why we
used HSMM and LPS for evaluation even though in prin-
ciple such data could be analyzed in other ways. For in-
stance, one could perform supervised rather than unsuper-
vised analysis to order cells. Alternatively, one could per-
form an initial analysis to identify differentially expressed
genes between different data collection time points and then

use them as prior genes (similar to the 518 prior genes for
HSMM) to order cells. Unlike the HSMM and LPS data,
the qNSC data set represents a different situation faced by
many investigators. Here, single-cell RNA-seq data are col-
lected from only one biological condition rather than from
multiple time points or conditions. In such a scenario, su-
pervised methods that use data collection time information
to order cells cannot be applied, and one cannot compare
different time points or conditions to find differential genes
and use them as prior genes for cell ordering. It is therefore
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Figure 10. Evaluation results for different methods in qNSC data set. (A) Robustness measured by the average similarity score from 100 independent
perturbations. (B) Mean rank of gold standard genes. (C) Number of detected gold standard genes among top differential genes.

important to be able to perform unsupervised pseudo-time
analysis such as TSCAN.

Besides TSCAN, this article also introduced several
methods to quantitatively evaluate cell ordering perfor-
mance. We expect that these evaluation methods will con-
tinue to be useful in the future for evaluating other pseudo-
time reconstruction algorithms. Although TSCAN was
tested using RNA-seq, in principle it should not be difficult
to tailor this approach to other data types should single-cell
data for those data types become available in the future.
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